

Catalysis Today 131 (2008) 179-187

Effect of Rh loading on the performance of Rh/Al₂O₃ for methane partial oxidation to synthesis gas

Jian-Mei Li, Fei-Yang Huang, Wei-Zheng Weng*, Xiao-Qing Pei, Chun-Rong Luo, Hai-Qiang Lin, Chuan-Jing Huang, Hui-Lin Wan*

State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Available online 28 November 2007

Abstract

Catalytic performance for partial oxidation of methane (POM) to synthesis gas was studied over the Rh/Al₂O₃ catalysts with Rh loadings between 0.1 and 3 wt%. It was found that the ignition temperature of POM reaction increased with the decreasing of the Rh loadings in the catalysts. For the POM reaction over the catalysts with high (≥ 1 wt%) Rh loadings, steady-state reactivity was observed. For the reaction over the catalysts with low (≤0.25 wt%) Rh loadings, however, oscillations in CH₄ and reaction products (CO, H₂, and CO₂) were observed. Comparative studies using H₂-TPR, O₂-TPD and high temperature in situ Raman spectroscopy techniques were carried out in order to elucidate the relation between the redox property of the Rh species in the Rh/Al₂O₃ with different Rh loadings and the performance of the catalysts for the reaction. Three kinds of oxidized rhodium species, i.e. the rhodium oxide species insignificantly affected by the support (RhO_x), that intimately interacting with the Al₂O₃ surface (Rh'O₂) and the Rh(AlO₂)_v species formed by diffusion of rhodium oxides in to sublayers of Al₂O₃ [C.P. Hwang, C.T. Yeh, Q.M. Zhu, Catal. Today, 51 (1999) 93.], were identified by H₂-TPR and O₂-TPD experiments. Among them, the first two species can be easily reduced by H₂ at temperature below 350 °C, while the last one can only be reduced by H₂ at temperature above 500 °C. The ignition temperatures of POM reaction over the catalysts are closely related to the temperature at which most of the RhO_x and Rh'O_x species can be reduced by CH₄ in the reaction mixture. Compared to the Rh/Al₂O₃ with high Rh loadings, the catalysts with low Rh loadings contain more Rh'O₃ species which possess stronger Rh-O bond strength and are more difficult to be reduced than RhO_x by the reaction mixture. Higher temperature is therefore required to ignite the POM reaction over the catalysts with lower Rh loadings. The oscillation during the POM reaction over the Rh/Al₂O₃ with low Rh loadings can be related to the behaviour of Rh(AlO₂), species in the catalyst switching cyclically from the oxidized state to the reduced state during the reaction. © 2007 Elsevier B.V. All rights reserved.

Keywords: Methane partial oxidation; Synthesis gas; Rh/Al₂O₃; Rh loading; Oscillation; In situ Raman

1. Introduction

The partial oxidation of methane (POM) to produce CO and H₂ has received increasing attention in recent years, mainly because of its potential application as a commercial source of synthesis gas [1–4]. The elucidation of reaction pathways in POM to synthesis gas over supported transition metal catalysts is an important pre-requisite toward improved catalyst designs. It is also one of the basic step and the major challenge in the study of the reaction [5]. Although numerous attempts have

 Al_2O_3 supported Rh catalyst exhibits high stability with excellent activity and selectivity for the reaction and has been extensively studied [11,13,14,32–37]. From the economical point of view, a catalyst of low Rh loading with high metal dispersion is preferred in order to achieve a high accessibility of

been made to understand the reaction mechanism, there is a still ongoing discussion whether synthesis gas is form via direct partial oxidation route [3] or via the reforming reactions after combustion of CH₄ [1]. It was found that the reaction mechanism might depend on the chemical state of the catalyst surface as well as on the type and amount of oxygen species available [6–17]. It was also reported that catalyst supports might play a significant role in affecting activity, selectivity and stability of catalysts as well as the reaction mechanism [11,13,18–32].

^{*} Corresponding authors. Fax: +86 592 2183047. *E-mail addresses:* wzweng@xmu.edu.cn (W.-Z. Weng), hlwan@xmu.edu.cn (H.-L. Wan).

catalytically active noble metal. On the other hand, due to the interaction between Rh and Al₂O₃, the Rh species in the catalysts with low metal loadings will be more significantly affected by Al₂O₃ than those on the samples with high metal loadings. It is found that Al₂O₃ is not inert concerning the adsorption and storage of oxygen [11] and may have a significant influence on the activity of Rh catalyst [32]. The participation of OH groups on the γ-Al₂O₃ during the POM reaction has been shown by Hofstad et al. [11] and Wang et al. [13]. Even the mechanisms of POM to synthesis gas over Rh/y-Al₂O₃ were found to depend on the Rh loading [37]. At low metal loadings, the combustion-reforming mechanism is responsible for the reaction, while at high loadings a combination of the combustion-reforming and pyrolysisoxidation mechanisms is responsible at low temperatures (<500 °C) and the pyrolysis-oxidation mechanism becomes dominant at high temperatures (>650 °C).

The aim of the present study is to investigate the nature of the Rh species in the Rh/Al₂O₃ with Rh loadings from 0.1 to 3 wt% using H₂-temperature-programmed reduction (H₂-TPR), O₂-temperature-programmed desorption (O₂-TPD) and high temperature in situ Raman spectroscopy techniques. The results of above characterizations are related to the catalytic performance of the catalysts at the temperature ranging from 300 to 600 °C. It is expected that the experiments should provide with some useful information to understand the effects of metal-support interaction on the nature of the rhodium species over Al₂O₃ and its relationship with the catalytic performance of the catalysts for methane partial oxidation to synthesis gas.

2. Experimental

2.1. Catalyst preparations

Rh/Al₂O₃ and Rh/SiO₂ catalysts were prepared by the wet impregnation method using RhCl₃·nH₂O (38 wt% Rh) as the precursor for the metal. Most of the Rh/Al₂O₃ catalysts used in the study were prepared using the Al₂O₃ from Guizhou Alumina Factory, China (TL-02, ~250 m²/g). The Rh/Al₂O₃ catalysts used in the O₂-TPD experiments were prepared using the Al₂O₃ from China Medicine (Group) Shanghai Chemical

Reagent Corporation (\sim 210 m²/g). The Rh/SiO₂ catalyst was prepared using the SiO₂ from Aldrich (60 A, \sim 480 m²/g). The Al₂O₃ and SiO₂ supports were calcined at 300 °C for 1 h before using. After noble metal impregnation, the catalyst was dried at 110 °C and calcined at 600 °C in the air for 4 h. The fresh catalysts were then reduced with H₂ at 600 °C for 30 min before subjecting to tests.

2.2. The performance of catalysts

The catalytic performance of the catalysts for POM to synthesis gas was studied using $CH_4/O_2/Ar = 2/1/45$ mixture (in the volume ratio) as a reaction feed. The reaction was carried out in a fixed-bed quartz tube reactor (5 mm i. d.) at the atmospheric pressure. The catalyst (15.0 mg) was reduced at $600\,^{\circ}C$ for 30 min before it was switched to take the reaction feed. The products were analyzed by an on-line GC equipped with a thermal conductivity detector (TCD) using Ar (99.999%, Linde) as the carrier gas and a carbon sieve column (1.5 m) for the separation of CH_4 , O_2 , H_2 , CO and CO_2 . In some experiments, a quadrupole mass spectrometer (Pfeiffer, model ThermoStar GSD301T2) was employed to analyze the composition of the reaction products. Ions at 2 (H_2), 15 (CH_4), 18 (H_2O), 28 (CO), 32 (O_2) and 44 (CO_2) *m/e* values were detected during on-line measurements.

2.3. Catalyst characterization

X-ray powder diffraction (XRD) analysis was carried out by a Panalytical X' pert PRO diffractometer scanning 2θ from 10 to 80° . Cu $K\alpha$ radiation operated at 40~kV and 30~mA was used as the X-ray source. The XRD patterns of the Rh/Al $_2O_3$ catalysts show only the diffraction peaks of γ -Al $_2O_3$ [38]. No diffraction peak referring to the rhodium oxide or metallic Rh species was detected in the fresh or reduced samples.

The BET (Brunauer-Emmett-Teller) surface area of the catalyst was measured by N_2 adsorption at $-196\,^{\circ}\mathrm{C}$ using a Micromeretics Tristar 3000 instrument. Before the measurement, the samples were degassed at 300 $^{\circ}\mathrm{C}$ for 2 h. The results are listed in Table 1. The metal dispersion data of the catalyst was determined by O_2 and H_2 chemisorption at 35 $^{\circ}\mathrm{C}$ assuming the stoichiometry values of O/Rh and H/Rh = 1. The

Table 1
BET surface area and metal dispersion data of the catalysts

Catalyst	BET (m ² /g)	$Rh_{red(600)}/Rh_{total}^{a} \times 100\%$	O/Rh _{red(600)}	H/Rh _{red(600)}	
0.1 wt% Rh/Al ₂ O ₃ 181 22.1		22.1	2.37	0.48	
0.25 wt% Rh/Al ₂ O ₃	183	31.5	1.90	0.49	
0.5 wt% Rh/Al ₂ O ₃	182	40.2	1.51	0.74	
1 wt% Rh/Al ₂ O ₃	184	58.6	1.06	0.76	
1.5 wt% Rh/Al ₂ O ₃	176	64.4	0.94	0.82	
2 wt% Rh/Al ₂ O ₃	179	68.8	0.88	0.80	
3 wt% Rh/Al ₂ O ₃	185	84.7	0.67	0.75	
1 wt% Rh/SiO ₂	484	~ 100	0.28	0.40	

^a $Rh_{red(600)}/Rh_{total}$: Ratio of the Rh species in the catalysts reducible by H_2 at temperature below 600 °C. The data were calculated based on the H_2 -TPR profiles shown in Fig. 3.

experiments were performed by a Micromeretics ASAP 2010 instrument. The catalyst sample (0.3–0.6 g) was first reduced with $\rm H_2$ (99.999%, Linde) at 600 °C for 30 min followed by evacuation at 450 °C for 30 min. The sample was then cooled down to 35 °C under vacuum for analysis. The O/Rh and H/Rh data, after being calibrated with the ratio of the Rh species in the sample reducible by $\rm H_2$ at 600 °C (Rh_{red(600)}/Rh_{total}, determined by $\rm H_2$ -TPR experiment), are listed in Table 1.

The H₂-TPR experiments were performed by a GC-TPR setup. Prior to the TPR experiment, the catalyst (0.1-0.15 g) was oxidized with $O_2/Ar = 5/95$ mixture (in the volume ratio, 20 mL/ min) at 600 °C for 30 min and cooled down to 5 °C under same atmosphere. The sample was then purged with $H_2/Ar = 5/95$ mixture at 5 °C for about 10 min until the base line of the instrument was flat. The TPR profile of the catalyst was obtained by heating the above treated sample from 5 to 800 °C at a rate of 10 °C/min in a flow of $H_2/Ar = 5/95$ mixture (50 mL/min). The hydrogen consumption was monitored by a TCD detector. The O₂-TPD experiments were performed by a Micromeritics AutoChem II 2920 instrument. The catalyst (\sim 0.2 g) was first oxidized with $O_2/He = 1/4$ mixture (in the volume ratio, 20 mL/ min) at 500 °C for 30 min and cooled down to 20 °C under same atmosphere. The sample was then purged with He (99.999%, Linde) at 20 °C for 30 min and heated from 20 to 1100 °C at a rate of 10 °C/min in a flow of He (50 mL/min). The O₂ desorption was analyzed by an on-line quadrupole mass spectrometer (Pfeiffer, model ThermoStar GSD301T2).

In situ Raman experiments were performed with a Renishaw R1000 microprobe Raman system equipped with CCD detectors using a home built high temperature in situ Raman cell described in a previous paper [39]. The samples were placed in the sample holder equipped with a thermocouple placed underneath for temperature measurement. The excitation wavelengths were 325 nm (He-Cd laser) with a power of ~3 mW and 514.5 nm (Ar⁺ laser) with power of ~5 mW measured at the analysis spot. The microscope attachment for the spectrometer is based on a Leica DMLM system using an OFR LMU-15×-NUV (for 325 nm He-Cd laser) and a Leica PL Fluotar 50× (for 514.5 nm Ar⁺ laser) objectives.

3. Results and discussion

3.1. Catalytic performance tests

3.1.1. Performance of the catalysts at different temperatures

Table 2 shows the catalytic performance of Rh/Al₂O₃ (0.1–3 wt%) and Rh/SiO₂ (1 wt%) catalysts measured at temperatures indicated in the table during stepwise heating of a previously reduced catalyst under $CH_4/O_2/Ar = 2/1/45$ flow from 30 to 600 °C. It can be seen that the oxidation of CH_4 on Rh/Al₂O₃ starts at the temperatures between 300 and 400 °C, depending on the amount of Rh loading. No CO and H_2 were detected before the complete consumption of O₂. The POM reaction, which can be experimentally determined by the suddenly rapid increase in CH_4 and O_2 conversions, was found to ignite at the temperatures between 440 and 540 °C, and the

ignition temperatures for POM reaction were found to decrease with the increasing of Rh loading in the catalysts. Similar results were reported by Wang et al. [37]. It was also found that, although the reactant (at $CH_4/O_2 = 2$) had been diluted with large amount of Ar, the observed CH_4 conversions and CO selectivities on the catalysts were still higher than the thermodynamic equilibrium values at the furnace temperatures [40], indicating that a hot spot layer still exists in the catalyst bed.

Compared to Rh/Al₂O₃ catalysts, the POM reaction on Rh/SiO₂ with comparable amount of Rh loading can be ignited at much lower temperature. These results suggested that both the support material and the Rh loading had a significant impact on the performance of catalyst. The stronger interaction between Rh and Al₂O₃ as compared to that between Rh and SiO₂ should be responsible for higher ignition temperature of POM reaction over Rh/Al₂O₃ catalysts [41,42]. To further elucidate the effect of metal-support interaction on the performance of Rh/Al₂O₃ catalysts for POM reaction, the continuous flow reaction tests over the catalysts with Rh loadings between 0.1 and 1 wt% are performed.

3.1.2. Continuous flow reaction tests

Fig. 1 shows the POM performances of the Rh/Al $_2$ O $_3$ catalysts with Rh loadings of 0.1, 0.25, 0.5 and 1 wt% at 600 °C (furnace temperature) and at a space velocity (SV) of 2.0×10^5 mL g cat $^{-1}$ h $^{-1}$. As shown in Fig. 1, steady-state reactivity was observed on 1 wt% Rh/Al $_2$ O $_3$ catalyst within about 6.5 h on stream. On 0.5 wt% Rh/Al $_2$ O $_3$, both the conversion of methane and the selectivities of CO and H $_2$ decreased with the increasing of time on stream. For the reaction over the catalysts with Rh loading of 0.25 wt% or lower, however, oscillations in CH $_4$ and products (CO, H $_2$ and CO $_2$) were observed.

Fig. 2 shows the oscillation cycles followed by a quadrupole mass spectrometer for the reaction over 0.1 wt% Rh/Al₂O₃ at 600 °C (furnace temperature). The signals of the reactants and the products have been vertically offset by the factors shown to the right of each plot to avoid overlapping. It can be seen that the period and amplitude of oscillations are irregular. Large amplitude oscillations proceeded along with the small oscillations. But the waveform of each oscillation cycle is very similar. Oscillations in the signals of CH₄ (one of the reactant) and complete oxidation products (CO₂ and H₂O) are observed to be in-phase with each other, whilst being out-ofphase with the signals of POM reaction products (CO and H₂). The maximum CH₄ conversion is always seen to coincide with the lowest concentrations of CO₂ and H₂O, and highest yields of CO and H₂. The temperature measured by a thermocouple placed at top of the catalyst bed (top line in figure) is also seen to rise and fall with the activity of the catalyst. In general, the temperature oscillation during the reaction is in-phase with the oscillations of CO and H₂. However, compared to other signals shown in Fig. 2, the response of temperature is a little sluggish probably due to the heat capacity of thermocouple. Since most of the O2 in the reaction mixture was consumed during the reaction, no oscillation in O_2 was observed.

Table 2 Catalytic performance of the catalysts at different temperature

Catalysts	Furnace temperature (°C)	Conv.(%)		Sel.(%)		H ₂ /CO	
		CH ₄	O_2	СО	H_2	CO ₂	
0.1 wt% Rh/Al ₂ O ₃	350	0	0	0	0	0	/
	400	0.93	3.8	0	0	100	/
	450	2.4	8.3	0	0	100	/
	500	5.5	23.2	0	0	100	/
	540	12.4	50.2	0	0	100	/
	550	46.6	100	63.4	57.5	36.6	1.8
	600	53.6	100	71.2	62.9	28.8	1.8
0.25 wt% Rh/Al ₂ O ₃	350	0	0	0	0	0	/
	400	1.0	4.8	0	0	100	/
	450	3.5	13.8	0	0	100	/
	500	11.9	48.5	0	0	100	/
	510	18.7	76.4	0	0	100	/
	520	58.9	100	63.8	80.3	36.2	2.5
	550	62.6	100	71.9	83.4	28.1	2.3
	600	64.7	100	74.0	79.9	26.0	2.2
0.5 wt% Rh/Al ₂ O ₃	350	0	0	0	0	0	/
	400	1.0	4.7	0	0	100	/
	450	3.5	14.2	0	0	100	/
	480	9.3	38.3	0	0	100	/
	490	55.1	100	55.1	75.1	44.9	2.7
	500	56.1	100	58.3	77.1	41.7	2.6
	550 600	68.9 79.2	100 100	74.4 85.2	81.4 81.3	25.6 14.8	2.2 1.9
							1.9
1 wt% Rh/Al ₂ O ₃	300	0	0	0	0	0	,
	350	0.8	2.0	0	0	100	/
	400 460	2.0 8.0	6.2 33.3	0 0	0 0	100 100	,
	470 470	51.9	33.3 100	49.3	77.3	50.7	3.1
	500	58.9	100	58.4	79.8	41.6	2.7
	550	71.8	100	76.0	82.1	24.0	2.2
	600	82.6	100	87.7	83.4	12.3	1.9
2 wt% Rh/Al ₂ O ₃	300	0	0	0	0	0	,
2 Wt /6 KII/AI ₂ O ₃	350	0.59	2.4	0	0	100	,
	400	2.1	8.9	0	0	100	,
	450	11.2	45.5	0	0	100	,
	460	52.1	100	47.4	74.1	52.6	3.1
	500	61.0	100	62.8	80.9	37.2	2.6
	550	73.4	100	78.9	82.7	21.1	2.1
	600	84.0	100	89.7	83.6	10.3	1.9
3 wt% Rh/Al $_2$ O $_3$	300	0	0	0	0	0	/
	350	1.0	3.5	0	0	100	/
	400	2.4	11.6	0	0	100	/
	430	9.7	41.0	0	0	100	/
	440	48.0	100	39.1	74.3	60.9	3.8
	450	49.9	100	43.2	76.1	56.8	3.5
	500	61.0	100	62.3	81.8	37.7	2.6
	550	73.3	100	77.5	82.2	22.5	2.1
	600	84.1	100	88.9	82.4	11.1	1.9
1 wt% Rh/SiO ₂	300	2.5	8.3	0	0	100	/
	350	11.6	45.9	0	0	100	/
	360	22.2	89.2	0	2.3	100	/
	370	25.0	97.5	4.2	7.6	95.8	3.7
	400	29.2	100	16.7	26.4	83.3	3.2
	450	39.0	100	41.3	53.4	58.7	2.6
	500	53.1	100	59.0	72.1	41.0	2.4
	550	68.0	100	75.5	82.9	24.5	2.2
	600	81.6	100	87.7	84.6	12.3	1.9

Reaction condition: CH₄/O₂/Ar = 2/1/45, $m_{\text{cat.}} = 15$ mg, SV = 2.0×10^5 mL h⁻¹ g⁻¹. Catalysts were reduced with H₂ at 600 °C before testing. Data were collected after 20 min on stream.

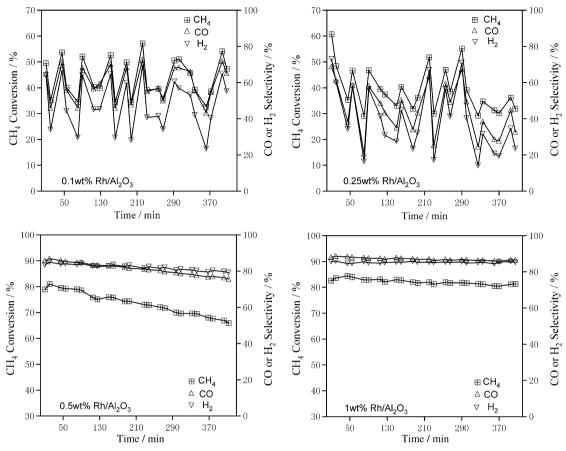


Fig. 1. Catalytic performance of the Rh/Al₂O₃ catalysts with different Rh loadings at 600 °C. Reaction condition: CH₄/O₂/Ar = 2/1/45, $m_{\text{cat.}} = 15 \text{ mg}$, SV = $2.0 \times 10^5 \text{ mL h}^{-1} \text{ g}^{-1}$. Catalysts were reduced with H₂ at 600 °C before testing.

As shown in Fig. 2, each oscillation cycle starts with a rapid increase in the signals of CO and H_2 . Even for a large oscillation cycle, the maximum concentrations of CO and H_2 can be reached within 2–3 s. The signals of CO and H_2 are then gradually decrease in intensity. For a large oscillation cycle, it will take more than several minutes for the signals of CO and

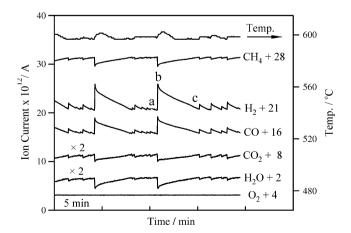


Fig. 2. Oscillations of methane partial oxidation to synthesis gas over 0.1 wt% Rh/Al₂O₃ at 600 °C (furnace temperature). The top line shows the temperature oscillation at the top of the catalyst bed during the reaction. Feed: CH₄/O₂/ Ar = 2/1/45. Catalysts were reduced with H₂ at 600 °C before testing.

 $\rm H_2$ to be back to the minimum level. The responses of CH₄, CO₂ and H₂O signals during the above period are almost in counter phase with the signals of CO and H₂. The oscillatory behaviour is no longer observed when furnace temperature is raised to 850 °C.

The oscillatory behaviour during methane partial oxidation reaction has also been found on the Ni, Co and Pd wires and foils [43–48], as well as on 0.1 wt% Rh/ α -Al₂O₃ [49], Rh/H-ZSM-5 [50] and 1 wt% Rh/γ-Al₂O₃ calcined at 900 °C [39]. According to the literature, the oscillatory behaviour can be related to the periodic oxidation and reduction of the metal species during the reaction [43–48]. These results suggest that the redox property of the rhodium species in the Rh/Al₂O₃ catalysts with Rh loadings ≤ 0.25 wt% are very different from that in the samples with Rh loadings higher than 1 wt%. From the results of O₂ and H₂ chemisorption over the Rh/Al₂O₃ with different Rh loadings (Table 1), it can be seen that the Rh species in the catalysts with Rh loadings ≤ 0.25 wt% show much higher O/Rh_{red(600)} values (1.90-2.37) than those in the samples with Rh loadings higher than 1 wt% (0.67-1.06) in the O₂ chemisorption experiments, indicating that the Rh species in the former samples are more easily oxidized than those in the latter one. Further evidence will be provided by the experiments of H₂-TPR and O₂-TPD shown in the following section.

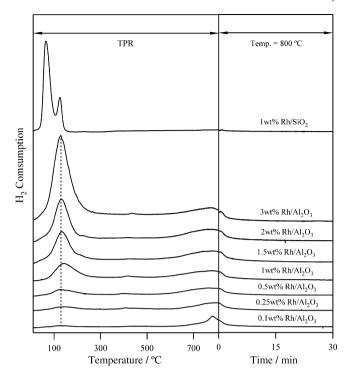


Fig. 3. H_2 -TPR profiles of 1 wt% Rh/SiO₂ and the Rh/Al₂O₃ catalysts with different Rh loadings. Before experiments, the fresh catalysts were reduced with H_2 /Ar = 5/95 at 600 °C for 30 min followed by reoxidized with O₂/Ar = 5/95 at 600 °C for 30 min.

3.2. H_2 -TPR and O_2 -TPD characterizations

The H₂-TPR profiles of the catalysts are shown in Fig. 3. The quantified figures of the TPR profiles for the catalysts are shown in Table 3. Each TPR curve of the Rh/Al₂O₃ catalysts are composed of two reduction peaks with temperature maxima ($T_{\rm m}$) at \sim 130 and >750 °C, respectively. According to the results of Hwang et al. [41], the TPR peak with $T_{\rm m}$ below

Table 3
Quantification of the TPR signals for the catalysts

Catalyst	Reduction temperature (°C)	Percentage (%)	
0.1 wt% Rh/Al ₂ O ₃	<350	20.9	
	>500	79.1	
0.25 wt% Rh/Al ₂ O ₃	<350	29.6	
	>500	70.4	
0.5 wt% Rh/Al ₂ O ₃	<350	38.2	
2 0	>500	61.8	
1 wt% Rh/Al ₂ O ₃	<350	56.7	
	>500	43.3	
1.5 wt% Rh/Al ₂ O ₃	<350	62.7	
	>500	37.3	
2 wt% Rh/Al ₂ O ₃	<350	67.9	
	>500	32.1	
3 wt% Rh/Al ₂ O ₃	<350	83.6	
	>500	16.4	
1 wt% Rh/SiO ₂	<250	~100	

350 °C can be attributed to the reduction of two kinds of rhodium oxide species with different extent of interaction with Al₂O₃, i.e. the rhodium oxide species insignificantly affected by the support (RhO_x) and that intimately interacting with the Al_2O_3 surface (RhⁱO_x). The latter is more difficult to be reduced than the former. The broad peak at temperature above 500 °C can be attributed to the reduction of Rh(AlO₂), species formed by diffusion of rhodium oxides into sublayers of Al₂O₃ structure as a result of high temperature (>500 °C) oxidation [41]. Due to the metal-support interaction between Rh and Al₂O₃ [41,42], the relative intensities of these TPR peaks varied significantly with the Rh loadings. The amount of Rh(AlO₂)_v species were found to increase significantly with the decreasing of Rh loadings. The position of the low temperature TPR peak $(T_{\rm m} \sim 130 \, ^{\circ}{\rm C})$ was also found to shift towards high temperature direction with the decreasing of Rh loadings. The catalysts with Rh loadings below 0.25 wt% consist mainly of Rh(AlO₂)_v species ($\geq 70\%$) which can only be reduced with H₂ at the temperature above 500 °C. Compared to Rh/Al₂O₃ catalysts, reduction of the rhodium oxide species supported on SiO2 took place at lower temperature. The TPR peaks with the temperature maxima at 65 and 125 °C were observed on 1 wt% Rh/SiO₂, and no reduction peak was observed in the high temperature region. This observation can be explained by that the metal-support interaction between Rh and SiO₂ is much weaker than that between Rh and Al₂O₃. To further elucidate the nature of the oxidized rhodium species in the Rh/Al₂O₃ catalysts of different Rh loadings, O2-TPD experiments were carried out.

Fig. 4 shows the O_2 -TPD profiles of Rh/Al $_2O_3$ and Rh/SiO $_2$ catalysts. Because the interaction between Rh and Al $_2O_3$ is much stronger than that between Rh and SiO $_2$, the temperature

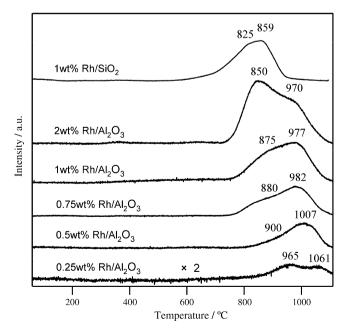


Fig. 4. O₂-TPD profiles of 1 wt% Rh/SiO₂ and the Rh/Al₂O₃ catalysts with different Rh loadings. Before experiments, the fresh catalysts were reduced with $\rm H_2/Ar = 5/95$ at 600 °C for 30 min followed by reoxidized with O₂/He = 1/4 at 500 °C for 30 min.

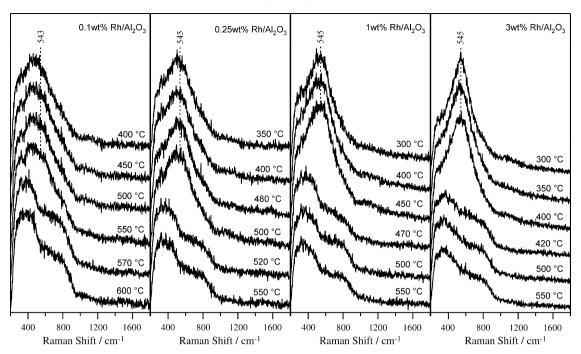


Fig. 5. Raman spectra of the Rh/Al₂O₃ catalysts recorded at the indicated temperature during stepwise heating of the previously reduced samples under CH₄/O₂/ Ar = 2/1/45 atmosphere from 30 to 600 °C.

maxima of the O₂ desorption peaks on Rh/Al₂O₃ samples are higher than those on Rh/SiO₂, which is also in agreement with the results of H₂-TPR experiments shown above. Each O₂-TPD profile of Rh/Al₂O₃ consists of two O₂ desorption peaks attributable to two kinds of oxidized Rh species in the samples. Based on the results of our previous of O₂-TPD and H₂-TPR studies on the Rh/Al₂O₃ catalyst calcined at 600 and 900 °C [39], the desorption peaks with maxima at 870–880 °C and 970–980 °C can be attributed to two kinds of rhodium oxides with different extent of interaction with Al₂O₃ (i.e. RhO_r and $Rh^{i}O_{x}$). The peak with maximum above 1000 °C may have (at least partially) resulted from Rh(AlO₂)_v species. With the decreasing of Rh loadings, O2 desorption peaks shifted significantly to high temperature, indicating that the percentage of the rhodium species intimately interacting with the Al₂O₃ surface (RhⁱO_x) and that strongly interacting with the support (Rh(AlO₂)_v) increase significantly with the decreasing of Rh loadings. This is in good agreement with the results of TPR experiments.

The results of above H_2 -TPR and O_2 -TPD characterizations on the Rh/Al $_2O_3$ catalysts with different Rh loadings clearly indicate that, compared to the oxidized rhodium species in the catalysts with Rh loadings higher than 1 wt%, most of the oxidized rhodium species in the samples with Rh loadings ≤ 0.25 wt% possess stronger Rh–O bond and are more difficult to be reduced by H_2 . These factors should be responsible for the significant difference in the catalytic performance of the catalysts for POM reaction.

3.3. High temperature in situ Raman characterization

To further elucidate the effect of metal-support interaction on the redox property of the rhodium species in the catalysts under reaction atmosphere and its relationship with the ignition temperature of the catalysts for POM reaction, a comparative study using high temperature *in situ* Raman spectroscopy on the Rh/SiO₂ and Rh/Al₂O₃ catalysts under CH₄/O₂/Ar = 2/1/45 atmosphere were carried out at temperature from 30 to 600 °C.

Fig. 5 shows the Raman spectra of the Rh/Al₂O₃ catalysts with Rh loadings of 0.1, 0.25, 1 and 3 wt% recorded at the temperature indicated in the figure during stepwise heating of the previously reduced samples under $CH_4/O_2/Ar = 2/1/45$ atmosphere from 30 to 600 °C. The Raman spectra of 4 wt% Rh/SiO₂ (Fig. 6) recorded under same experimental condition are also shown for comparison. It was found that, as soon as the H₂-reduced catalysts were switched to CH₄/O₂/Ar mixture at the room temperature, the Raman bands with maxima at \sim 545 and ~540 cm⁻¹ were observed (spectra not shown) on Rh/ Al₂O₃ and 4 wt% Rh/SiO₂, respectively. According to the results of H₂-TPR experiments (Fig. 3), the bands at \sim 540 cm⁻¹ can be assigned to the rhodium oxide species in Rh/SiO₂, and that at \sim 545 cm⁻¹ can be assigned to the rhodium oxide species with different extent of interaction with Al₂O₃ (i.e. RhO_x and/or RhⁱO_x). This observation indicates that the metallic rhodium species (at least those on the surface of metallic rhodium particles) in both catalyst systems can be oxidized by O₂ in reactant even at room temperature. As the temperature of samples increased, the Raman band of the rhodium oxide species in 4 wt% Rh/SiO2 was found to disappear at the temperature between 350 and 400 °C, while the temperatures at which RhO_x and/or RhⁱO_x species in Rh/Al₂O₃ vanished depend on the Rh loadings. It is also found that the temperatures at which the rhodium oxide species in the Rh/SiO₂ or Rh/Al₂O₃ vanishes are in good agreement with the temperatures when the POM reaction over the catalyst ignites (see the catalytic performance of the catalysts shown in

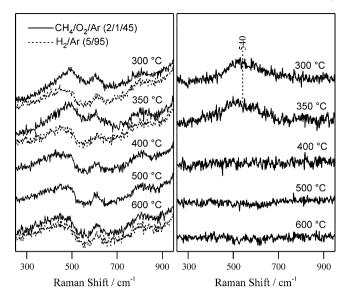


Fig. 6. Raman spectra of 4 wt% Rh/SiO₂ catalyst recorded at the indicated temperature during stepwise heating of the previously reduced samples under $CH_4/O_2/Ar = 2/1/45$ atmosphere (solid line) from 30 to 600 °C. The spectra recorded under $H_2/Ar = 5/95$ atmosphere (dotted line) are shown for comparison. Left: Original spectra. Right: The spectra of SiO₂ were subtracted.

Table 2). These results indicate that, the rhodium species in oxidized form are mainly responsible for complete oxidation of CH₄ to CO₂ and H₂O. An abruptly change in the oxidation state of rhodium species in the catalyst take place at the temperature when POM reaction starts. The results of above *in situ* Raman characterization have also provided further experimental evidence that the rhodium species in the Rh/Al₂O₃ catalysts with Rh lower loadings possess higher oxygen affinity and are more difficult to be reduced than those in the catalysts with higher Rh loadings under the POM reaction atmosphere.

On the basis of the results of H₂-TPR, O₂-TPD and in situ Raman characterizations shown above, the difference in the ignition temperatures of POM reaction over the Rh/Al₂O₃ catalysts with different Rh loadings can be related to the difference in the proportion of RhO_x and RhⁱO_x species in the catalyst samples. The results of catalytic performance test (Table 2) and in situ Raman characterization (Fig. 5) clearly indicated that POM reaction over Rh/Al₂O₃ started at the temperature when most of the rhodium oxides species (RhO_x and RhⁱO_x) were reduced to metallic state. The ignition temperatures for the POM reaction over the catalyst are therefore closely related to the temperature at which most of the RhO_x and Rh^iO_x species can be reduced by CH_4 in the reaction mixture. Compared to the Rh/Al₂O₃ with high Rh loading, the catalyst with low Rh loading contains more RhⁱO_x species which possess stronger Rh-O bond strength and are more difficult to be reduced than RhO_x under the POM atmosphere. As a result, higher temperature is required to ignite the POM reaction over the catalysts with lower Rh loadings.

As can be seen from the results of H_2 -TPR and O_2 -TPD characterizations (Figs. 2 and 4, Table 3), A major difference between the Rh/Al₂O₃ catalysts of high (≥ 1 wt%) and low (≤ 0.25 wt%) Rh loadings is that the proportion of the rhodium species of different reducibility (i.e. RhO_x, RhⁱO_x and

Rh(AlO₂)_v) is significantly different. The catalysts with Rh loadings above 1 wt% contain more than 56% of rhodium oxide species (i.e. RhO_x and RhⁱO_x) which can be easily reduced by H_2 at the temperature below 350 °C, while in the catalysts with Rh loadings below 0.25 wt%, the percentage of the rhodium species formed by diffusion of rhodium oxides into sublayers of Al₂O₃ structure (i.e, Rh(AlO₂)_v) increases significantly. Since steady-state activity for POM reaction were observed over the catalysts with Rh loadings higher than 1 wt%, the origin of the oscillatory behaviour during the reaction over the Rh/Al₂O₃ with Rh loadings below 0.25 wt% should be related to the formation of large percentage (≥70%) of Rh(AlO₂)_v species which could only be reduced by H2 at the temperature above 500 °C. Based on the results of mass spectrometry study on the reaction over 0.1 wt% Rh/Al₂O₃ catalyst at 600 and 850 °C, the oscillatory behaviour during POM reaction can be explained by cyclically switching of the Rh(AlO₂)_v species from the oxidized state to the reduced state as a result of temperature oscillation in the catalyst bed during the reaction. While the temperature of the catalyst during the reaction is governed by the change in the proportion of the following exothermic and endothermic reactions, i.e. total oxidation of methane to CO2 and H2O (1), partial oxidation of methane (2), steam reforming of methane (3) and CO₂ reforming of methane (4) to synthesis gas.

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \quad \Delta H^{\circ}_{(298K)} = -803 \text{ kJ/mol}$$
 (1)

$$CH_4 + 1/2O_2 \rightarrow CO + 2H_2 \quad \Delta H^{\circ}_{(298K)} = -36 \text{ kJ/mol} \quad (2)$$

$$CH_4 + H_2O \rightarrow CO + 3H_2 \quad \Delta H^{\circ}_{(298K)} = 206 \text{ kJ/mol}$$
 (3)

$$CH_4 + CO_2 \rightarrow 2CO + 2H_2 \quad \Delta H^{\circ}_{(298K)} = 247 \text{ kJ/mol}$$
 (4)

The change in the proportion of each reaction would change the overall reaction heat as well as the temperature of the catalyst. The main features of the oscillation in mass spectrometry signals observed in Fig. 2 marked by the letters (a–c) can therefore be explained as follows.

At point (a), the catalyst showed lowest activity for synthesis gas formation (\sim 40% CO, selectivity) and highest activity for CH₄ combustion (∼60% CO₂, selectivity). Since the oxidized rhodium species is a poorer catalyst than the metallic Rh for synthesis gas formation, the catalyst at this point can be thought to consist of mainly oxidized Rh species. However, based on the results of H₂-TPR (Fig. 3) and in situ Raman characterizations (Fig. 5), most of the RhO_x and RhⁱO_x species should have been reduced under the experimental condition. The dominant oxidized rhodium species in the catalyst can only be the Rh(AlO₂)_v species. This species is thought to be active for the total oxidation of CH₄. Accompanied by the increase in the proportion of highly exothermic CH₄ combustion reaction (reaction (1)) on the catalyst, large amount of heat was produced, leading to an increase in catalyst bed temperature. When the temperature of the catalyst is high enough, some of the rhodium species in Rh(AlO₂)_v are reduced, resulting in a sudden increase in the activity of the catalyst for synthesis gas formation via the slightly exothermic reaction (2) and/or strong

endothermic reactions (3 and 4), as observed between points (a and b). At the same time, the proportion of highly exothermic CH₄ combustion reaction (reaction (1)) over the catalyst falls rapidly to a minimum value. As a result, the temperature of the catalyst gradually decrease, and the metallic rhodium species formed by the reduction of Rh(AlO₂)_v at high temperature are slowly reoxidized to Rh(AlO₂)_v. Accompanied by the reoxidation of the catalyst, the rate of reactions (2-4) decreased and the activity of the catalyst for highly exothermic reaction (1) increased again, as observed between point (b and c). A new oscillation cycle will begin when temperature of the catalyst is high enough for the reduction of Rh(AlO₂)_v. If the furnace temperature is sufficient high (e.g. ≥ 850 °C), the reoxidation of metallic Rh species to Rh(AlO₂), is restrained. Most of the rhodium species in the catalyst under reaction condition will remain in the metallic state. Thus, the oscillatory behaviour is no longer observed when the temperature of furnace is above 850 °C.

4. Conclusions

On the basis of the results of H₂-TPR, O₂-TPD and in situ Raman characterizations, it can be concluded that the ignition temperature for the POM reaction over Rh/Al₂O₃ catalysts is related to the temperature at which most of the RhO_x and RhⁱO_x species in the sample is reduced by CH₄ in the reaction mixture. Compared to the Rh/Al₂O₃ with high Rh loadings, the catalysts with low Rh loadings contain more RhⁱO_x species which possess stronger Rh-O bond strength and are more difficult to be reduced than RhO_x under POM reaction atmosphere. Higher temperature is therefore required to ignite the POM reaction over the catalysts with lower Rh loadings. The oscillation during POM reaction over the Rh/Al₂O₃ with low Rh loadings $(\leq 0.25 \text{ wt}\%)$ can be related to the behaviour of the Rh(AlO₂)_v species (formed by diffusion of rhodium oxide into sublayers of Al₂O₃ structure) in the catalyst switching cyclically from the oxidized state to the reduced state during the reaction.

Acknowledgements

This project is supported by the Ministry of Science and Technology of China (2005CB221401), the National Natural Science Foundation of China (20433030 and 20423002) and Key Scientific Project of Fujian Province, China" (2005HZ01-3).

References

- [1] M. Prettre, Ch. Eichner, M. Perrin, Trans. Faraday Soc. 42 (1946) 335.
- [2] A.T. Ashcroft, A.K. Cheetham, J.S. Foord, M.L.H. Green, C.P. Grey, A.J. Murrell, P.D.F. Vernon, Nature 344 (1990) 319.
- [3] D.A. Hickman, L.D. Schmidt, J. Catal. 138 (1992) 267.
- [4] D.A. Hickman, L.D. Schmidt, Science 259 (1993) 343.
- [5] Y.H. Hu, E. Ruckenstein, Adv. Catal. 48 (2004) 297, and the references there in.
- [6] D.A. Hickman, L.D. Schmidt, AIChE J. 39 (1993) 1164.

- [7] D. Dissanayake, M.P. Rosynek, K.C.C. Kharas, J.H. Lunsford, J. Catal. 132 (1991) 117.
- [8] F. van Looij, E.R. Stobbe, J.W. Geus, Catal. Lett. 50 (1998) 59.
- [9] O.V. Buyevskaya, D. Wolf, M. Baerns, Catal. Lett. 29 (1994) 249.
- [10] E.P.J. Mallens, J.H.B.J. Hoebink, G.B. Marin, J. Catal. 167 (1997) 43.
- [11] H.K. Hofstad, J.H.B.J. Hoebink, A. Holmen, G.B. Marin, Catal. Today 40 (1998) 157.
- [12] M. Fathi, F. Monnet, Y. Schuurman, A. Holmen, C. Mirodatos, J. Catal. 190 (2000) 439.
- [13] D.Z. Wang, O. Dewaele, A.M. De Groote, G.F. Froment, J. Catal. 159 (1996) 418.
- [14] J.C. Slaa, R.J. Berger, G.B. Marin, Catal. Lett. 43 (1997) 63.
- [15] W.Z. Weng, Q.G. Yan, C.R. Luo, Y.Y. Liao, H.L. Wan, Catal. Lett. 74 (2001) 37.
- [16] W.Z. Weng, Q.G. Yan, C.R. Luo, Y.Y. Liao, M.S. Chen, H.L. Wan, Stud. Surf. Sci. Catal. 136 (2001) 233.
- [17] W.Z. Weng, M.S. Chen, H.L. Wan, Chem. Rec. 2 (2002) 102.
- [18] Y. Boucouvalas, Z.L. Zhang, X.E. Verykios, Catal. Lett. 40 (1996) 189.
- [19] Y. Boucouvalas, Z.L. Zhang, A.M. Efstathiou, X.E. Verykios, Stud. Surf. Sci. Catal. 101 (1996) 443.
- [20] V.R. Choudhary, A.M. Rajput, B. Prabhakar, J. Catal. 139 (1993) 326.
- [21] V.R. Choudhary, A.S. Mamman, S.D. Sansare, Angew. Chem. Int. Ed. Engl. 31 (1992) 1189.
- [22] V.R. Choudhary, A.M. Rajput, B. Prabhakar, Catal. Lett. 15 (1992) 363.
- [23] V.R. Choudhary, A.M. Rajput, V.H. Rane, J. Phys. Chem. 96 (1992) 8686.
- [24] C. Elmasides, D.I. Kondarides, W. Grünert, X.E. Verykios, J. Phys. Chem. 103 (1999) 5227.
- [25] C. Elmasides, D.I. Kondarides, S.G. Neophytides, X.E. Verykios, J. Catal. 198 (2001) 195.
- [26] H.Y. Wang, E. Ruckenstein, J. Catal. 186 (1999) 181.
- [27] E. Ruckenstein, H.Y. Wang, J. Catal. 187 (1999) 151.
- [28] E. Ruckenstein, H.Y. Wang, J. Catal. 190 (2000) 32.
- [29] K. Nakagawa, N. Ikenaga, T. Suzuki, T. Kobayashi, M. Haruta, Appl. Catal. A Gen. 169 (1998) 281.
- [30] K. Nakagawa, N. Ikenaga, Y. Teng, T. Kobayashi, T. Suzuki, J. Catal. 186 (1999) 405.
- [31] F. Monnet, Y. Schuurman, F. Cadete Santos Aires, J.C. Bertolini, C. Mirodatos, Catal. Today 64 (2001) 51.
- [32] Z.J. Tian, O. Dewaele, G.B. Marin, Catal. Lett. 57 (1999) 9.
- [33] E. Kikuchi, Y. Chen, Stud. Surf. Sci. Catal. 119 (1998) 441.
- [34] H.Y. Wang, E. Ruckenstein, Catal. Lett. 59 (1999) 121.
- [35] J.B. Claridge, M.L.H. Green, S.C. Tsang, A.P.E. York, A.T. Ashcroft, P.D. Battle, Catal. Lett. 22 (1993) 299.
- [36] J.D. Grunwaldt, L. Basini, B.S. Clausen, J. Catal. 200 (2001) 321.
- [37] H.Y. Wang, E. Ruckenstein, J. Phys. Chem. B 103 (1999) 11327.
- [38] R.S. Zhou, R.L. Snyder, Acta Cryst. B47 (1991) 617.
- [39] W.Z. Weng, X.Q. Pei, J.M. Li, C.R. Luo, Y. Liu, H.Q. Lin, C.J. Huang, H.L. Wan, Catal. Today 117 (2006) 53.
- [40] D. Dissanayake, M.P. Rosynek, J.H. Lunsford, J. Phys. Chem. 97 (1993) 3644.
- [41] C.P. Hwang, C.T. Yeh, Q.M. Zhu, Catal. Today 51 (1999) 93.
- [42] H.C. Yao, S. Japar, M. Shelef, J. Catal. 50 (1977) 407.
- [43] X.L. Zhang, D.O. Hayward, D.M.P. Mingos, Catal. Lett. 83 (2002) 149.
- [44] X.L. Zhang, D.O. Hayward, D.M.P. Mingos, Catal. Lett. 86 (2003) 235.
- [45] X.L. Zhang, C.S.M. Lee, D.M.P. Mingos, D.O. Hayward, Appl. Catal. A Gen. 248 (2003) 129.
- [46] X.L. Zhang, C.S.M. Lee, D.M.P. Mingos, D.O. Hayward, Appl. Catal. A Gen. 240 (2003) 183.
- [47] X.L. Zhang, C.S.M. Lee, D.O. Hayward, D.M.P. Mingos, Catal. Today 105 (2005) 283.
- [48] V.Yu. Bychkov, Yu.P. Tyulenin, M.M. Slinko, V.N. Korchak, Appl. Catal. A Gen. 321 (2007) 180.
- [49] L. Basini, A. Guarinoni, A. Aragno, J. Catal. 190 (2000) 284.
- [50] Y. Liu, W.P. Fang, W.Z. Weng, H.L. Wan, J. Mol. Catal. A-Chem. 239 (2005) 193.